A friendly iteration forcing that the four cardinal characteristics of $\mathcal E$ can be pairwise different

نویسندگان

چکیده

Let $\mathcal E$ be the $\sigma $-ideal generated by closed measure zero sets of reals. We use an ultrafilter-extendable matrix iteration ccc posets to force that, for E$, their associated cardinal characteristics (i.e. additivity, coveri

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On pairwise comparison matrices that can be made consistent by the modification of a few elements

Pairwise comparison matrices are often used in Multi-attribute Decision Making for weighting the attributes or for the evaluation of the alternatives with respect to a criteria. Matrices provided by the decision makers are rarely consistent and it is important to index the degree of inconsistency. In the paper, the minimal number of matrix elements by the modification of which the pairwise comp...

متن کامل

Forcing Axioms and Cardinal Arithmetic

We survey some recent results on the impact of strong forcing axioms such as the Proper Forcing Axiom PFA and Martin’s Maximum MM on cardinal arithmetic. We concentrate on three combinatorial principles which follow from strong forcing axioms: stationary set reflection, Moore’s Mapping Reflection Principle MRP and the P-ideal dichotomy introduced by Abraham and Todorčević which play the key rol...

متن کامل

The first measurable cardinal can be the first uncountable regular cardinal at any successor height

We use techniques due to Moti Gitik to construct models in which for an arbitrary ordinal ρ, אρ+1 is both the least measurable and least regular uncountable cardinal.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Colloquium Mathematicum

سال: 2023

ISSN: ['0010-1354', '1730-6302']

DOI: https://doi.org/10.4064/cm8917-2-2023